A single texture can statically appear in code mixed with a shadow sampler
and a non-shadow sampler. This would be create invalid SPIR-V, unless
one of them is provably dead.
The previous detection of this happened before DCE, so some shaders would
trigger the error even though they wouldn't after DCE. To handle that
case, this PR splits the texture into two: one with each mode. It sets
"needsLegalization" (if that happens for any texture) to warn that this shader
will need post-compilation legalization.
If the texture is only used with one of the two modes, behavior is as it
was before.
Some languages allow a restricted set of user structure types returned from texture sampling
operations. Restrictions include the total vector size of all components may not exceed 4,
and the basic types of all members must be identical.
This adds underpinnings for that ability. Because storing a whole TType or even a simple
TTypeList in the TSampler would be expensive, the structure definition is held in a
table outside the TType. The TSampler contains a small bitfield index, currently 4 bits
to support up to 15 separate texture template structure types, but that can be adjusted
up or down. Vector returns are handled as before.
There are abstraction methods accepting and returning a TType (such as may have been parsed
from a grammar). The new methods will accept a texture template type and set the
sampler to the structure if possible, checking a range of error conditions such as whether
the total structure vector components exceed 4, or whether their basic types differe, or
whether the struct contains non-vector-or-scalar members. Another query returns the
appropriate TType for the sampler.
High level summary of design:
In the TSampler, this holds an index into the texture structure return type table:
unsigned int structReturnIndex : structReturnIndexBits;
These are the methods to set or get the return type from the TSampler. They work for vector or structure returns, and potentially could be expanded to handle other things (small arrays?) if ever needed.
bool setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc);
void getTextureReturnType(const TSampler& sampler, const TType& retType, const TSourceLoc& loc) const;
The ``convertReturn`` lambda in ``HlslParseContext::decomposeSampleMethods`` is greatly expanded to know how to copy a vec4 sample return to whatever the structure type should be. This is a little awkward since it involves introducing a comma expression to return the proper aggregate value after a set of memberwise copies.
This allows removal of isPerVertexBuiltIn(). It also leads to
removal of addInterstageIoToLinkage(), which is no longer needed.
Includes related name improvements.
Lays the groundwork for fixing issue #954.
Partial flattenings were previously tracked through a stack of active subsets
in the parse context, but full functionality needs AST nodes to represent
this across time, removing the need for parsecontext tracking.
Adds a transformation step to the post processing step.
Two modes are available:
1) keep
- Keeps samplers, textures and sampled textures as is
2) transform pure texture into sampled texture and remove pure samplers
- removes all pure samplers
- transforms all pure textures into its sampled counter part
Change-Id: If54972e8052961db66c23f4b7e719d363cf6edbd
Marking as WIP since it might deserve discussion or at least explicit consideration.
During type sanitization, the TQualifier's TBuiltInVariable type is lost. However,
sometimes it's needed downstream. There were already two methods in use to track
it through to places it was needed: one in the TParameter, and one in a map in the
HlslParseContext used for structured buffers.
The latter was going to be insufficient when SB types with counters are passed to
user functions, and it's proving awkward to track the data to where it's needed.
This PR holds a proposal: track the original declared builtin type in the TType,
so it's trivially available where needed.
This lets the other two mechanisms be removed (and they are in this PR). There's a
side benefit of not losing certain types of information before the reflection interface.
This PR is only that proposal, so it changes no test results. If it's acceptable,
I'll use it for the last piece of SB counter functionality.
This adds infrastructure suitable for any front end to create SPIR-V loop
control flags. The only current front end doing so is HLSL.
[unroll] turns into spv::LoopControlUnrollMask
[loop] turns into spv::LoopControlDontUnrollMask
no specification means spv::LoopControlMaskNone
This is WIP, heavy on the IP part. There's not yet enough to use in real workloads.
Currently present:
* Creation of separate counter buffers for structured buffer types needing them.
* IncrementCounter / DecrementCounter methods
* Postprocess to remove unused counter buffers from linkage
* Associated counter buffers are given @count suffix (invalid as a user identifier)
Not yet present:
* reflection queries to obtain bindings for counter buffers
* Append/Consume buffers
* Ability to use SB references passed as fn parameters
Improves foundation for adding scalar casts.
Makes handle/make names more sane, better commented, uses more
precise subclass typing, and removes mutual recursion between
converting initializer lists and making constructors.
Previously, patch constant functions only accepted OutputPatch. This
adds InputPatch support, via a pseudo-builtin variable type, so that
the patch can be tracked clear through from the qualifier.
The prior implementation of GS did not work with the new EP wrapping architecture.
This fixes it: the Append() method now looks up the actual output rather
than the internal sanitized temporary type, and writes to that.
There were many (~8) different places in TType which all knew how to traverse
the struct/type hierarchy. There's a need to add another, but I didn't
want to duplicate the traversal code again. This is a small refactoring
which passes a predicate to a single traverse-and-test method. That also
shortens all the containsSomething() methods from 9 lines of body to 1.
There are no test differences: it's nonfunctional.