glslang-zig/glslang/MachineIndependent/localintermediate.h
steve-lunarg ef33ec0925 HLSL: add intrinsic function implicit promotions
This PR handles implicit promotions for intrinsics when there is no exact match,
such as for example clamp(int, bool, float).  In this case the int and bool will
be promoted to a float, and the clamp(float, float, float) form used.

These promotions can be mixed with shape conversions, e.g, clamp(int, bool2, float2).

Output conversions are handled either via the existing addOutputArgumentConversion
function, which this PR generalizes to handle either aggregates or unaries, or by
intrinsic decomposition.  If there are methods or intrinsics to be decomposed,
then decomposition is responsible for any output conversions, which turns out to
happen automatically in all current cases.  This can be revisited once inout
conversions are in place.

Some cases of actual ambiguity were fixed in several tests, e.g, spv.register.autoassign.*

Some intrinsics with only uint versions were expanded to signed ints natively, where the
underlying AST and SPIR-V supports that.  E.g, countbits.  This avoids extraneous
conversion nodes.

A new function promoteAggregate is added, and used by findFunction.  This is essentially
a generalization of the "promote 1st or 2nd arg" algorithm in promoteBinary.

The actual selection proceeds in three steps, as described in the comments in
hlslParseContext::findFunction:

1. Attempt an exact match.  If found, use it.
2. If not, obtain the operator from step 1, and promote arguments.
3. Re-select the intrinsic overload from the results of step 2.
2016-11-23 10:36:34 -07:00

459 lines
20 KiB
C++

//
//Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
//Copyright (C) 2016 LunarG, Inc.
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
//CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
//LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
//ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
//
#ifndef _LOCAL_INTERMEDIATE_INCLUDED_
#define _LOCAL_INTERMEDIATE_INCLUDED_
#include "../Include/intermediate.h"
#include "../Public/ShaderLang.h"
#include "Versions.h"
#include <algorithm>
#include <set>
class TInfoSink;
namespace glslang {
struct TVectorFields {
TVectorFields() { }
TVectorFields(int c0, int c1, int c2, int c3) : num(4)
{
offsets[0] = c0;
offsets[1] = c1;
offsets[2] = c2;
offsets[3] = c3;
}
int offsets[4];
int num;
};
//
// Some helper structures for TIntermediate. Their contents are encapsulated
// by TIntermediate.
//
// Used for detecting recursion: A "call" is a pair: <caller, callee>.
struct TCall {
TCall(const TString& pCaller, const TString& pCallee) : caller(pCaller), callee(pCallee) { }
TString caller;
TString callee;
bool visited;
bool currentPath;
bool errorGiven;
};
// A generic 1-D range.
struct TRange {
TRange(int start, int last) : start(start), last(last) { }
bool overlap(const TRange& rhs) const
{
return last >= rhs.start && start <= rhs.last;
}
int start;
int last;
};
// An IO range is a 3-D rectangle; the set of (location, component, index) triples all lying
// within the same location range, component range, and index value. Locations don't alias unless
// all other dimensions of their range overlap.
struct TIoRange {
TIoRange(TRange location, TRange component, TBasicType basicType, int index)
: location(location), component(component), basicType(basicType), index(index) { }
bool overlap(const TIoRange& rhs) const
{
return location.overlap(rhs.location) && component.overlap(rhs.component) && index == rhs.index;
}
TRange location;
TRange component;
TBasicType basicType;
int index;
};
// An offset range is a 2-D rectangle; the set of (binding, offset) pairs all lying
// within the same binding and offset range.
struct TOffsetRange {
TOffsetRange(TRange binding, TRange offset)
: binding(binding), offset(offset) { }
bool overlap(const TOffsetRange& rhs) const
{
return binding.overlap(rhs.binding) && offset.overlap(rhs.offset);
}
TRange binding;
TRange offset;
};
// Things that need to be tracked per xfb buffer.
struct TXfbBuffer {
TXfbBuffer() : stride(TQualifier::layoutXfbStrideEnd), implicitStride(0), containsDouble(false) { }
std::vector<TRange> ranges; // byte offsets that have already been assigned
unsigned int stride;
unsigned int implicitStride;
bool containsDouble;
};
class TSymbolTable;
class TSymbol;
class TVariable;
//
// Set of helper functions to help parse and build the tree.
//
class TIntermediate {
public:
explicit TIntermediate(EShLanguage l, int v = 0, EProfile p = ENoProfile) :
source(EShSourceNone), language(l), profile(p), version(v), treeRoot(0),
numEntryPoints(0), numErrors(0), numPushConstants(0), recursive(false),
invocations(TQualifier::layoutNotSet), vertices(TQualifier::layoutNotSet), inputPrimitive(ElgNone), outputPrimitive(ElgNone),
pixelCenterInteger(false), originUpperLeft(false),
vertexSpacing(EvsNone), vertexOrder(EvoNone), pointMode(false), earlyFragmentTests(false), depthLayout(EldNone), depthReplacing(false), blendEquations(0),
multiStream(false), xfbMode(false),
shiftSamplerBinding(0),
shiftTextureBinding(0),
shiftImageBinding(0),
shiftUboBinding(0),
autoMapBindings(false),
flattenUniformArrays(false),
useUnknownFormat(false)
{
localSize[0] = 1;
localSize[1] = 1;
localSize[2] = 1;
localSizeSpecId[0] = TQualifier::layoutNotSet;
localSizeSpecId[1] = TQualifier::layoutNotSet;
localSizeSpecId[2] = TQualifier::layoutNotSet;
xfbBuffers.resize(TQualifier::layoutXfbBufferEnd);
}
void setLimits(const TBuiltInResource& r) { resources = r; }
bool postProcess(TIntermNode*, EShLanguage);
void output(TInfoSink&, bool tree);
void removeTree();
void setSource(EShSource s) { source = s; }
EShSource getSource() const { return source; }
void setEntryPointName(const char* ep) { entryPointName = ep; }
void setEntryPointMangledName(const char* ep) { entryPointMangledName = ep; }
const std::string& getEntryPointName() const { return entryPointName; }
const std::string& getEntryPointMangledName() const { return entryPointMangledName; }
void setShiftSamplerBinding(unsigned int shift) { shiftSamplerBinding = shift; }
unsigned int getShiftSamplerBinding() const { return shiftSamplerBinding; }
void setShiftTextureBinding(unsigned int shift) { shiftTextureBinding = shift; }
unsigned int getShiftTextureBinding() const { return shiftTextureBinding; }
void setShiftImageBinding(unsigned int shift) { shiftImageBinding = shift; }
unsigned int getShiftImageBinding() const { return shiftImageBinding; }
void setShiftUboBinding(unsigned int shift) { shiftUboBinding = shift; }
unsigned int getShiftUboBinding() const { return shiftUboBinding; }
void setAutoMapBindings(bool map) { autoMapBindings = map; }
bool getAutoMapBindings() const { return autoMapBindings; }
void setFlattenUniformArrays(bool flatten) { flattenUniformArrays = flatten; }
bool getFlattenUniformArrays() const { return flattenUniformArrays; }
void setNoStorageFormat(bool b) { useUnknownFormat = b; }
bool getNoStorageFormat() const { return useUnknownFormat; }
void setVersion(int v) { version = v; }
int getVersion() const { return version; }
void setProfile(EProfile p) { profile = p; }
EProfile getProfile() const { return profile; }
void setSpv(const SpvVersion& s) { spvVersion = s; }
const SpvVersion& getSpv() const { return spvVersion; }
EShLanguage getStage() const { return language; }
void addRequestedExtension(const char* extension) { requestedExtensions.insert(extension); }
const std::set<std::string>& getRequestedExtensions() const { return requestedExtensions; }
void setTreeRoot(TIntermNode* r) { treeRoot = r; }
TIntermNode* getTreeRoot() const { return treeRoot; }
void incrementEntryPointCount() { ++numEntryPoints; }
int getNumEntryPoints() const { return numEntryPoints; }
int getNumErrors() const { return numErrors; }
void addPushConstantCount() { ++numPushConstants; }
bool isRecursive() const { return recursive; }
TIntermSymbol* addSymbol(const TVariable&);
TIntermSymbol* addSymbol(const TVariable&, const TSourceLoc&);
TIntermSymbol* addSymbol(const TType&, const TSourceLoc&);
TIntermSymbol* addSymbol(const TIntermSymbol&);
TIntermTyped* addConversion(TOperator, const TType&, TIntermTyped*) const;
TIntermTyped* addShapeConversion(TOperator, const TType&, TIntermTyped*);
TIntermTyped* addBinaryMath(TOperator, TIntermTyped* left, TIntermTyped* right, TSourceLoc);
TIntermTyped* addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc);
TIntermTyped* addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc);
TIntermTyped* addUnaryMath(TOperator, TIntermTyped* child, TSourceLoc);
TIntermTyped* addBuiltInFunctionCall(const TSourceLoc& line, TOperator, bool unary, TIntermNode*, const TType& returnType);
bool canImplicitlyPromote(TBasicType from, TBasicType to, TOperator op = EOpNull) const;
TOperator mapTypeToConstructorOp(const TType&) const;
TIntermAggregate* growAggregate(TIntermNode* left, TIntermNode* right);
TIntermAggregate* growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc&);
TIntermAggregate* makeAggregate(TIntermNode* node);
TIntermAggregate* makeAggregate(TIntermNode* node, const TSourceLoc&);
TIntermTyped* setAggregateOperator(TIntermNode*, TOperator, const TType& type, TSourceLoc);
bool areAllChildConst(TIntermAggregate* aggrNode);
TIntermNode* addSelection(TIntermTyped* cond, TIntermNodePair code, const TSourceLoc&);
TIntermTyped* addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc&);
TIntermTyped* addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc&);
TIntermTyped* addMethod(TIntermTyped*, const TType&, const TString*, const TSourceLoc&);
TIntermConstantUnion* addConstantUnion(const TConstUnionArray&, const TType&, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(int, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned int, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(long long, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned long long, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(bool, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(double, TBasicType, const TSourceLoc&, bool literal = false) const;
TIntermTyped* promoteConstantUnion(TBasicType, TIntermConstantUnion*) const;
bool parseConstTree(TIntermNode*, TConstUnionArray, TOperator, const TType&, bool singleConstantParam = false);
TIntermLoop* addLoop(TIntermNode*, TIntermTyped*, TIntermTyped*, bool testFirst, const TSourceLoc&);
TIntermAggregate* addForLoop(TIntermNode*, TIntermNode*, TIntermTyped*, TIntermTyped*, bool testFirst, const TSourceLoc&);
TIntermBranch* addBranch(TOperator, const TSourceLoc&);
TIntermBranch* addBranch(TOperator, TIntermTyped*, const TSourceLoc&);
TIntermTyped* addSwizzle(TVectorFields&, const TSourceLoc&);
// Low level functions to add nodes (no conversions or other higher level transformations)
// If a type is provided, the node's type will be set to it.
TIntermBinary* addBinaryNode(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc) const;
TIntermBinary* addBinaryNode(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc, const TType&) const;
TIntermUnary* addUnaryNode(TOperator op, TIntermTyped* child, TSourceLoc) const;
TIntermUnary* addUnaryNode(TOperator op, TIntermTyped* child, TSourceLoc, const TType&) const;
// Add conversion from node's type to given basic type.
TIntermTyped* convertToBasicType(TOperator op, TBasicType basicType, TIntermTyped* node) const;
// Constant folding (in Constant.cpp)
TIntermTyped* fold(TIntermAggregate* aggrNode);
TIntermTyped* foldConstructor(TIntermAggregate* aggrNode);
TIntermTyped* foldDereference(TIntermTyped* node, int index, const TSourceLoc&);
TIntermTyped* foldSwizzle(TIntermTyped* node, TVectorFields& fields, const TSourceLoc&);
// Tree ops
static const TIntermTyped* findLValueBase(const TIntermTyped*, bool swizzleOkay);
// Linkage related
void addSymbolLinkageNodes(TIntermAggregate*& linkage, EShLanguage, TSymbolTable&);
void addSymbolLinkageNode(TIntermAggregate*& linkage, const TSymbol&);
bool setInvocations(int i)
{
if (invocations != TQualifier::layoutNotSet)
return invocations == i;
invocations = i;
return true;
}
int getInvocations() const { return invocations; }
bool setVertices(int m)
{
if (vertices != TQualifier::layoutNotSet)
return vertices == m;
vertices = m;
return true;
}
int getVertices() const { return vertices; }
bool setInputPrimitive(TLayoutGeometry p)
{
if (inputPrimitive != ElgNone)
return inputPrimitive == p;
inputPrimitive = p;
return true;
}
TLayoutGeometry getInputPrimitive() const { return inputPrimitive; }
bool setVertexSpacing(TVertexSpacing s)
{
if (vertexSpacing != EvsNone)
return vertexSpacing == s;
vertexSpacing = s;
return true;
}
TVertexSpacing getVertexSpacing() const { return vertexSpacing; }
bool setVertexOrder(TVertexOrder o)
{
if (vertexOrder != EvoNone)
return vertexOrder == o;
vertexOrder = o;
return true;
}
TVertexOrder getVertexOrder() const { return vertexOrder; }
void setPointMode() { pointMode = true; }
bool getPointMode() const { return pointMode; }
bool setLocalSize(int dim, int size)
{
if (localSize[dim] > 1)
return size == localSize[dim];
localSize[dim] = size;
return true;
}
unsigned int getLocalSize(int dim) const { return localSize[dim]; }
bool setLocalSizeSpecId(int dim, int id)
{
if (localSizeSpecId[dim] != TQualifier::layoutNotSet)
return id == localSizeSpecId[dim];
localSizeSpecId[dim] = id;
return true;
}
int getLocalSizeSpecId(int dim) const { return localSizeSpecId[dim]; }
void setXfbMode() { xfbMode = true; }
bool getXfbMode() const { return xfbMode; }
void setMultiStream() { multiStream = true; }
bool isMultiStream() const { return multiStream; }
bool setOutputPrimitive(TLayoutGeometry p)
{
if (outputPrimitive != ElgNone)
return outputPrimitive == p;
outputPrimitive = p;
return true;
}
TLayoutGeometry getOutputPrimitive() const { return outputPrimitive; }
void setOriginUpperLeft() { originUpperLeft = true; }
bool getOriginUpperLeft() const { return originUpperLeft; }
void setPixelCenterInteger() { pixelCenterInteger = true; }
bool getPixelCenterInteger() const { return pixelCenterInteger; }
void setEarlyFragmentTests() { earlyFragmentTests = true; }
bool getEarlyFragmentTests() const { return earlyFragmentTests; }
bool setDepth(TLayoutDepth d)
{
if (depthLayout != EldNone)
return depthLayout == d;
depthLayout = d;
return true;
}
TLayoutDepth getDepth() const { return depthLayout; }
void setDepthReplacing() { depthReplacing = true; }
bool isDepthReplacing() const { return depthReplacing; }
void addBlendEquation(TBlendEquationShift b) { blendEquations |= (1 << b); }
unsigned int getBlendEquations() const { return blendEquations; }
void addToCallGraph(TInfoSink&, const TString& caller, const TString& callee);
void merge(TInfoSink&, TIntermediate&);
void finalCheck(TInfoSink&);
void addIoAccessed(const TString& name) { ioAccessed.insert(name); }
bool inIoAccessed(const TString& name) const { return ioAccessed.find(name) != ioAccessed.end(); }
int addUsedLocation(const TQualifier&, const TType&, bool& typeCollision);
int checkLocationRange(int set, const TIoRange& range, const TType&, bool& typeCollision);
int addUsedOffsets(int binding, int offset, int numOffsets);
bool addUsedConstantId(int id);
int computeTypeLocationSize(const TType&) const;
bool setXfbBufferStride(int buffer, unsigned stride)
{
if (xfbBuffers[buffer].stride != TQualifier::layoutXfbStrideEnd)
return xfbBuffers[buffer].stride == stride;
xfbBuffers[buffer].stride = stride;
return true;
}
int addXfbBufferOffset(const TType&);
unsigned int computeTypeXfbSize(const TType&, bool& containsDouble) const;
static int getBaseAlignment(const TType&, int& size, int& stride, bool std140, bool rowMajor);
bool promote(TIntermOperator*);
protected:
TIntermSymbol* addSymbol(int Id, const TString&, const TType&, const TConstUnionArray&, TIntermTyped* subtree, const TSourceLoc&);
void error(TInfoSink& infoSink, const char*);
void mergeBodies(TInfoSink&, TIntermSequence& globals, const TIntermSequence& unitGlobals);
void mergeLinkerObjects(TInfoSink&, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects);
void mergeImplicitArraySizes(TType&, const TType&);
void mergeErrorCheck(TInfoSink&, const TIntermSymbol&, const TIntermSymbol&, bool crossStage);
void checkCallGraphCycles(TInfoSink&);
void inOutLocationCheck(TInfoSink&);
TIntermSequence& findLinkerObjects() const;
bool userOutputUsed() const;
static int getBaseAlignmentScalar(const TType&, int& size);
bool isSpecializationOperation(const TIntermOperator&) const;
bool promoteUnary(TIntermUnary&);
bool promoteBinary(TIntermBinary&);
void addSymbolLinkageNode(TIntermAggregate*& linkage, TSymbolTable&, const TString&);
bool promoteAggregate(TIntermAggregate&);
const EShLanguage language; // stage, known at construction time
EShSource source; // source language, known a bit later
std::string entryPointName;
std::string entryPointMangledName;
unsigned int shiftSamplerBinding;
unsigned int shiftTextureBinding;
unsigned int shiftImageBinding;
unsigned int shiftUboBinding;
bool autoMapBindings;
bool flattenUniformArrays;
bool useUnknownFormat;
EProfile profile;
int version;
SpvVersion spvVersion;
TIntermNode* treeRoot;
std::set<std::string> requestedExtensions; // cumulation of all enabled or required extensions; not connected to what subset of the shader used them
TBuiltInResource resources;
int numEntryPoints;
int numErrors;
int numPushConstants;
bool recursive;
int invocations;
int vertices;
TLayoutGeometry inputPrimitive;
TLayoutGeometry outputPrimitive;
bool pixelCenterInteger;
bool originUpperLeft;
TVertexSpacing vertexSpacing;
TVertexOrder vertexOrder;
bool pointMode;
int localSize[3];
int localSizeSpecId[3];
bool earlyFragmentTests;
TLayoutDepth depthLayout;
bool depthReplacing;
int blendEquations; // an 'or'ing of masks of shifts of TBlendEquationShift
bool xfbMode;
bool multiStream;
typedef std::list<TCall> TGraph;
TGraph callGraph;
std::set<TString> ioAccessed; // set of names of statically read/written I/O that might need extra checking
std::vector<TIoRange> usedIo[4]; // sets of used locations, one for each of in, out, uniform, and buffers
std::vector<TOffsetRange> usedAtomics; // sets of bindings used by atomic counters
std::vector<TXfbBuffer> xfbBuffers; // all the data we need to track per xfb buffer
std::unordered_set<int> usedConstantId; // specialization constant ids used
private:
void operator=(TIntermediate&); // prevent assignments
};
} // end namespace glslang
#endif // _LOCAL_INTERMEDIATE_INCLUDED_