Makes some white-space differences in most output, plus a few cases
where more could have been put out but was cut short by the previous
fix-sized buffer.
This introduces parallel types for IO-type containing aggregates used as
non-entry point function parameters or return types, or declared as variables.
Further uses of the same original type will share the same sanitized deep
structure.
This is intended to be used with the wrap-entry-point branch.
Previously, a type graph would turn into a type tree. That is,
a deep node that is shared would have multiple copies made.
This is important when creating IO and non-IO versions of deep types.
(Still adding tests: do not commit)
This fixes PR #632 so that:
(a) The 4 PerVertex builtins are added to an interface block for all stages except fragment.
(b) Other builtin qualified variables are added as "loose" linkage members.
(c) Arrayness from the PerVertex builtins is moved to the PerVertex block.
(d) Sometimes, two PerVertex blocks are created, one for in, one for out (e.g, for some GS that
both reads and writes a Position)
- fixed ParseHelper.cpp newlines (crlf -> lf)
- removed trailing white space in most source files
- fix some spelling issues
- extra blank lines
- tabs to spaces
- replace #include comment about no location
This commit adds support for copying nested hierarchical types of split
types. E.g, a struct of a struct containing both user and builtin interstage
IO variables.
When copying split types, if any subtree does NOT contain builtin interstage
IO, we can copy the whole subtree with one assignment, which saves a bunch
of AST verbosity for memberwise copies of that subtree.
This adds structure splitting, which among other things will enable GS support where input structs
are passed, and thus become input arrays of structs in the GS inputs. That is a common GS case.
The salient points of this PR are:
* Structure splitting has been changed from "always between stages" to "only into the VS and out of
the PS". It had previously happened between stages because it's not legal to pass a struct
containing a builtin IO variable.
* Structs passed between stages are now split into a struct containing ONLY user types, and a
collection of loose builtin IO variables, if any. The user-part is passed as a normal struct
between stages, which is valid SPIR-V now that the builtin IO is removed.
* Internal to the shader, a sanitized struct (with IO qualifiers removed) is used, so that e.g,
functions can work unmodified.
* If a builtin IO such as Position occurs in an arrayed struct, for example as an input to a GS,
the array reference is moved to the split-off loose variable, which is given the array dimension
itself.
When passing things around inside the shader, such as over a function call, the the original type
is used in a sanitized form that removes the builtIn qualifications and makes them temporaries.
This means internal function calls do not have to change. However, the type when returned from
the shader will be member-wise copied from the internal sanitized one to the external type.
The sanitized type is used in variable declarations.
When copying split types and unsplit, if a sub-struct contains only user variables, it is copied
as a single entity to avoid more AST verbosity.
Above strategy arrived at with talks with @johnkslang.
This is a big complex change. I'm inclined to leave it as a WIP until it can get some exposure to
real world cases.
Previously, an error was thrown when assigning a float1 to a scalar float,
or similar for other basic types. This allows that.
Also, this allows calling functions accepting scalars with float1 params,
so for example sin(float1) will work. This is a minor change in
HlslParseContext::findFunction().
This PR sets the TQualifier layoutFormat according to the HLSL image type.
For instance:
RWTexture1D <float2> g_tTex1df2;
becomes ElfRg32f. Similar on Buffers, e.g, Buffer<float4> mybuffer;
The return type for image and buffer loads is now taken from the storage format.
Also, the qualifier for the return type is now (properly) a temp, not a global.
- Add new queries: TProgram::getUniformTType and getUniformBlockTType,
which return a const TType*, or nullptr on a bad index. These are valid for
any source language.
- Interface name for HLSL cbuffers is taken from the (only) available declaration name,
whereas before it was always an empty string, which caused some troubles with reflection
mapping them all to the same index slot. This also makes it appear in the SPIR-V binary
instead of an empty string.
- Print the binding as part of the reflection textual dump.
- TType::clone becomes const. Needed to call it from a const method, and anyway it doesn't
change the object it's called on.
- Because the TObjectReflection constructor is called with a TType *reference* (not pointer)
so that it's guaranteed to pass in a type, and the "badReflection" value should use a nullptr
there, that now has a dedicated static method to obtain the bad value. It uses a private
constructor, so external users can't create one with a nullptr type.
- Support GL_AMD_shader_ballot (SPV_AMD_shader_ballot).
- Support GL_AMD_shader_trinary_minmax (SPV_AMD_shader_trinary_minmax).
- Support GL_AMD_shader_explicit_vertex_parameter
(SPV_AMD_shader_explicit_vertex_parameter).
- Support GL_AMD_gcn_shader (SPV_AMD_gcn_shader).
Note: This required adding a new test mode to see the AST for vulkan tests.
This also required reworking some deeper parts of type creation, regarding
when storage qualification and constness is deduced bottom-up or dictated
top-down.
- Add new keyword int64_t/uint64_t/i64vec/u64vec.
- Support 64-bit integer literals (dec/hex/oct).
- Support built-in operators for 64-bit integer type.
- Add implicit and explicit type conversion for 64-bit integer type.
- Add new built-in functions defined in this extension.
Much about const or temp is mechanical, about actual declaration,
while much is semantic, about something higher level. This commit
checks every use everywhere, and for the high-level ones, substitutes
an encapsulated version instead.