Implement non-square matrices, and make a few type improvements. Cleaned up a few old issues. Added two tests.

Details
 - added all the new non-square types
 - separated concepts of matrix size and vector size
 - removed VS 6.0 comments/workarounds
 - removed obsolete concept of matrix fields



git-svn-id: https://cvs.khronos.org/svn/repos/ogl/trunk/ecosystem/public/sdk/tools/glslang@20436 e7fa87d3-cd2b-0410-9028-fcbf551c1848
This commit is contained in:
John Kessenich 2013-02-04 23:54:58 +00:00
parent 1c809955ba
commit f0fdc53e2a
17 changed files with 532 additions and 492 deletions

View file

@ -132,26 +132,19 @@ TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIn
node->setRight(right);
if (! node->promote(infoSink))
return 0;
//
// If they are both constants, they must be folded.
//
TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
if (leftTempConstant)
leftTempConstant = left->getAsConstantUnion();
if (rightTempConstant)
rightTempConstant = right->getAsConstantUnion();
//
// See if we can fold constants.
//
TIntermTyped* typedReturnNode = 0;
if ( leftTempConstant && rightTempConstant) {
typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
if (typedReturnNode)
return typedReturnNode;
if (leftTempConstant && rightTempConstant) {
TIntermTyped* folded = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
if (folded)
return folded;
else
infoSink.info.message(EPrefixInternalError, "Constant folding failed", line);
}
return node;
@ -253,9 +246,9 @@ TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode,
}
if (newType != EbtVoid) {
child = addConversion(op, TType(newType, EvqTemporary, child->getNominalSize(),
child->isMatrix(),
child->isArray()),
child = addConversion(op, TType(newType, EvqTemporary, child->getVectorSize(),
child->getMatrixCols(),
child->getMatrixRows()),
child);
if (child == 0)
return 0;
@ -456,7 +449,7 @@ TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TInt
return 0;
}
TType type(promoteTo, EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
TType type(promoteTo, EvqTemporary, node->getVectorSize(), node->getMatrixCols(), node->getMatrixRows());
newNode = new TIntermUnary(newOp, type);
newNode->setLine(node->getLine());
newNode->setOperand(node);
@ -742,27 +735,7 @@ bool TIntermOperator::modifiesState() const
//
bool TIntermOperator::isConstructor() const
{
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2:
case EOpConstructMat3:
case EOpConstructMat4:
case EOpConstructFloat:
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
case EOpConstructStruct:
return true;
default:
return false;
}
return op > EOpConstructGuardStart && op < EOpConstructGuardEnd;
}
//
// Make sure the type of a unary operator is appropriate for its
@ -814,12 +787,6 @@ bool TIntermUnary::promote(TInfoSink&)
//
bool TIntermBinary::promote(TInfoSink& infoSink)
{
int size = left->getNominalSize();
if (right->getNominalSize() > size)
size = right->getNominalSize();
TBasicType basicType = left->getBasicType();
//
// Arrays have to be exact matches.
//
@ -870,7 +837,7 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
//
// All scalars. Code after this test assumes this case is removed!
//
if (size == 1) {
if (left->getVectorSize() == 1 && right->getVectorSize() == 1) {
switch (op) {
@ -930,40 +897,45 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
return true;
}
//
// Are the sizes compatible?
//
if ( left->getNominalSize() != size && left->getNominalSize() != 1 ||
right->getNominalSize() != size && right->getNominalSize() != 1)
return false;
//
// Can these two operands be combined?
//
TBasicType basicType = left->getBasicType();
switch (op) {
case EOpMul:
if (!left->isMatrix() && right->isMatrix()) {
if (left->isVector())
if (left->isVector()) {
if (left->getVectorSize() != right->getMatrixRows())
return false;
op = EOpVectorTimesMatrix;
else {
setType(TType(basicType, EvqTemporary, right->getMatrixCols()));
} else {
op = EOpMatrixTimesScalar;
setType(TType(basicType, EvqTemporary, size, true));
setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), right->getMatrixRows()));
}
} else if (left->isMatrix() && !right->isMatrix()) {
if (right->isVector()) {
if (left->getMatrixCols() != right->getVectorSize())
return false;
op = EOpMatrixTimesVector;
setType(TType(basicType, EvqTemporary, size, false));
setType(TType(basicType, EvqTemporary, left->getMatrixRows()));
} else {
op = EOpMatrixTimesScalar;
}
} else if (left->isMatrix() && right->isMatrix()) {
if (left->getMatrixCols() != right->getMatrixRows())
return false;
op = EOpMatrixTimesMatrix;
setType(TType(basicType, EvqTemporary, 0, right->getMatrixCols(), left->getMatrixRows()));
} else if (!left->isMatrix() && !right->isMatrix()) {
if (left->isVector() && right->isVector()) {
if (left->getVectorSize() != right->getVectorSize())
return false;
// leave as component product
} else if (left->isVector() || right->isVector()) {
op = EOpVectorTimesScalar;
setType(TType(basicType, EvqTemporary, size, false));
if (right->getVectorSize() > 1)
setType(TType(basicType, EvqTemporary, right->getVectorSize()));
}
} else {
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
@ -972,9 +944,11 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
break;
case EOpMulAssign:
if (!left->isMatrix() && right->isMatrix()) {
if (left->isVector())
if (left->isVector()) {
if (left->getVectorSize() != right->getMatrixRows() || left->getVectorSize() != right->getMatrixCols())
return false;
op = EOpVectorTimesMatrixAssign;
else {
} else {
return false;
}
} else if (left->isMatrix() && !right->isMatrix()) {
@ -984,6 +958,8 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
op = EOpMatrixTimesScalarAssign;
}
} else if (left->isMatrix() && right->isMatrix()) {
if (left->getMatrixCols() != left->getMatrixRows() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixCols() != right->getMatrixRows())
return false;
op = EOpMatrixTimesMatrixAssign;
} else if (!left->isMatrix() && !right->isMatrix()) {
if (left->isVector() && right->isVector()) {
@ -992,7 +968,6 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
if (! left->isVector())
return false;
op = EOpVectorTimesScalarAssign;
setType(TType(basicType, EvqTemporary, size, false));
}
} else {
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
@ -1000,7 +975,7 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
}
break;
case EOpAssign:
if (left->getNominalSize() != right->getNominalSize())
if (left->getVectorSize() != right->getVectorSize() || left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows())
return false;
// fall through
case EOpAdd:
@ -1015,7 +990,12 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
left->isVector() && right->isMatrix() ||
left->getBasicType() != right->getBasicType())
return false;
setType(TType(basicType, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
if (left->isMatrix() && right->isMatrix() && (left->getMatrixCols() != right->getMatrixCols() || left->getMatrixRows() != right->getMatrixRows()))
return false;
if (left->isVector() && right->isVector() && left->getVectorSize() != right->getVectorSize())
return false;
if (right->isVector() || right->isMatrix())
setType(TType(basicType, EvqTemporary, right->getVectorSize(), right->getMatrixCols(), right->getMatrixRows()));
break;
case EOpEqual:
@ -1031,7 +1011,7 @@ bool TIntermBinary::promote(TInfoSink& infoSink)
setType(TType(EbtBool));
break;
default:
default:
return false;
}
@ -1135,7 +1115,7 @@ bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, co
{
if (leftNodeType.isArray()) {
TType typeWithoutArrayness = leftNodeType;
typeWithoutArrayness.clearArrayness();
typeWithoutArrayness.dereference();
int arraySize = leftNodeType.getArraySize();
@ -1159,7 +1139,7 @@ bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, co
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
{
constUnion *unionArray = getUnionArrayPointer();
constUnion *unionArray = getUnionArrayPointer();
int objectSize = getType().getObjectSize();
if (constantNode) { // binary operations
@ -1167,17 +1147,22 @@ TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNod
constUnion *rightUnionArray = node->getUnionArrayPointer();
TType returnType = getType();
// for a case like float f = 1.2 + vec4(2,3,4,5);
if (getType().getBasicType() != node->getBasicType()) {
infoSink.info.message(EPrefixInternalError, "Constant folding basic types don't match", getLine());
return 0;
}
if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
// for a case like float f = vec4(2,3,4,5) + 1.2;
rightUnionArray = new constUnion[objectSize];
for (int i = 0; i < objectSize; ++i)
rightUnionArray[i] = *node->getUnionArrayPointer();
returnType = getType();
rightUnionArray[i] = *node->getUnionArrayPointer();
} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
// for a case like float f = vec4(2,3,4,5) + 1.2;
// for a case like float f = 1.2 + vec4(2,3,4,5);
rightUnionArray = node->getUnionArrayPointer();
unionArray = new constUnion[constantNode->getType().getObjectSize()];
for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
unionArray[i] = *getUnionArrayPointer();
unionArray[i] = *getUnionArrayPointer();
returnType = node->getType();
objectSize = constantNode->getType().getObjectSize();
}
@ -1189,182 +1174,142 @@ TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNod
switch(op) {
case EOpAdd:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] + rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] + rightUnionArray[i];
break;
case EOpSub:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] - rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] - rightUnionArray[i];
break;
case EOpMul:
case EOpVectorTimesScalar:
case EOpMatrixTimesScalar:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] * rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] * rightUnionArray[i];
break;
case EOpMatrixTimesMatrix:
if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
return 0;
}
{// support MSVC++6.0
int size = getNominalSize();
tempConstArray = new constUnion[size*size];
for (int row = 0; row < size; row++) {
for (int column = 0; column < size; column++) {
tempConstArray[size * column + row].setFConst(0.0f);
for (int i = 0; i < size; i++) {
tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
}
}
case EOpMatrixTimesMatrix:
tempConstArray = new constUnion[getMatrixRows() * node->getMatrixCols()];
for (int row = 0; row < getMatrixRows(); row++) {
for (int column = 0; column < node->getMatrixCols(); column++) {
float sum = 0.0f;
for (int i = 0; i < node->getMatrixRows(); i++)
sum += unionArray[i * getMatrixRows() + row].getFConst() * rightUnionArray[column * node->getMatrixRows() + i].getFConst();
tempConstArray[column * getMatrixRows() + row].setFConst(sum);
}
}
returnType = TType(getType().getBasicType(), EvqConst, 0, getMatrixRows(), node->getMatrixCols());
break;
case EOpDiv:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++) {
switch (getType().getBasicType()) {
case EbtFloat:
if (rightUnionArray[i] == 0.0f) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setFConst(FLT_MAX);
} else
tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
break;
for (int i = 0; i < objectSize; i++) {
switch (getType().getBasicType()) {
case EbtFloat:
if (rightUnionArray[i] == 0.0f) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setFConst(FLT_MAX);
} else
tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
break;
case EbtInt:
if (rightUnionArray[i] == 0) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setIConst(INT_MAX);
} else
tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
break;
default:
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
return 0;
}
case EbtInt:
if (rightUnionArray[i] == 0) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setIConst(INT_MAX);
} else
tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
break;
default:
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
return 0;
}
}
break;
case EOpMatrixTimesVector:
if (node->getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
return 0;
}
tempConstArray = new constUnion[getNominalSize()];
{// support MSVC++6.0
for (int size = getNominalSize(), i = 0; i < size; i++) {
tempConstArray[i].setFConst(0.0f);
for (int j = 0; j < size; j++) {
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
}
case EOpMatrixTimesVector:
tempConstArray = new constUnion[getMatrixRows()];
for (int i = 0; i < getMatrixRows(); i++) {
float sum = 0.0f;
for (int j = 0; j < node->getVectorSize(); j++) {
sum += unionArray[j*getMatrixRows() + i].getFConst() * rightUnionArray[j].getFConst();
}
tempConstArray[i].setFConst(sum);
}
tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
tempNode = new TIntermConstantUnion(tempConstArray, TType(getBasicType(), EvqConst, getMatrixRows()));
tempNode->setLine(getLine());
return tempNode;
case EOpVectorTimesMatrix:
if (getType().getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
return 0;
}
tempConstArray = new constUnion[getNominalSize()];
{// support MSVC++6.0
for (int size = getNominalSize(), i = 0; i < size; i++) {
tempConstArray[i].setFConst(0.0f);
for (int j = 0; j < size; j++) {
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
}
}
tempConstArray = new constUnion[node->getMatrixCols()];
for (int i = 0; i < node->getMatrixCols(); i++) {
float sum = 0.0f;
for (int j = 0; j < getVectorSize(); j++)
sum += unionArray[j].getFConst() * rightUnionArray[i*node->getMatrixRows() + j].getFConst();
tempConstArray[i].setFConst(sum);
}
break;
tempNode = new TIntermConstantUnion(tempConstArray, TType(getBasicType(), EvqConst, node->getMatrixCols()));
tempNode->setLine(getLine());
return tempNode;
case EOpMod:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] % rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] % rightUnionArray[i];
break;
case EOpRightShift:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
break;
case EOpLeftShift:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] << rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] << rightUnionArray[i];
break;
case EOpAnd:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] & rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] & rightUnionArray[i];
break;
case EOpInclusiveOr:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] | rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] | rightUnionArray[i];
break;
case EOpExclusiveOr:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
break;
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] && rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] && rightUnionArray[i];
break;
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] || rightUnionArray[i];
}
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] || rightUnionArray[i];
break;
case EOpLogicalXor:
tempConstArray = new constUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
switch (getType().getBasicType()) {
case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
default: assert(false && "Default missing");
}
for (int i = 0; i < objectSize; i++) {
switch (getType().getBasicType()) {
case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
default: assert(false && "Default missing");
}
}
break;
@ -1500,13 +1445,15 @@ TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNod
TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
{
if (node->getType().isArray())
infoSink.info.message(EPrefixInternalError, "Cannot promote array", node->getLine());
constUnion *rightUnionArray = node->getUnionArrayPointer();
int size = node->getType().getObjectSize();
constUnion *leftUnionArray = new constUnion[size];
for (int i=0; i < size; i++) {
for (int i=0; i < size; i++) {
switch (promoteTo) {
case EbtFloat:
switch (node->getType().getBasicType()) {
@ -1560,14 +1507,13 @@ TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermC
default:
infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
return 0;
}
}
}
const TType& t = node->getType();
return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier().storage, t.getNominalSize(), t.isMatrix(),
t.isArray()), node->getLine());
return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier().storage, t.getVectorSize(), t.getMatrixCols(), t.getMatrixRows()),
node->getLine());
}
void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)