Enhance readability of error messages for GLSL

Specifically, make GLSL link error messages more specific and output
only information relevant to the error.

Also change type printing to more closely reflect GLSL syntax. This
is the default for link error messages, but must me enabled with the
new option --enhanced-msgs for compilation error messages.

Also with --enhanced-msgs, only emit one error message per source
line.
This commit is contained in:
Greg Fischer 2021-12-30 11:56:57 -07:00
parent c34bb3b6c5
commit ca0d54d51b
56 changed files with 1055 additions and 374 deletions

View file

@ -2142,7 +2142,8 @@ public:
const char* getPrecisionQualifierString() const { return ""; }
TString getBasicTypeString() const { return ""; }
#else
TString getCompleteString() const
TString getCompleteString(bool syntactic = false, bool getQualifiers = true, bool getPrecision = true,
bool getType = true, TString name = "", TString structName = "") const
{
TString typeString;
@ -2150,232 +2151,335 @@ public:
const auto appendUint = [&](unsigned int u) { typeString.append(std::to_string(u).c_str()); };
const auto appendInt = [&](int i) { typeString.append(std::to_string(i).c_str()); };
if (qualifier.hasSprivDecorate())
if (getQualifiers) {
if (qualifier.hasSprivDecorate())
appendStr(qualifier.getSpirvDecorateQualifierString().c_str());
if (qualifier.hasLayout()) {
if (qualifier.hasLayout()) {
// To reduce noise, skip this if the only layout is an xfb_buffer
// with no triggering xfb_offset.
TQualifier noXfbBuffer = qualifier;
noXfbBuffer.layoutXfbBuffer = TQualifier::layoutXfbBufferEnd;
if (noXfbBuffer.hasLayout()) {
appendStr("layout(");
if (qualifier.hasAnyLocation()) {
appendStr(" location=");
appendUint(qualifier.layoutLocation);
if (qualifier.hasComponent()) {
appendStr(" component=");
appendUint(qualifier.layoutComponent);
}
if (qualifier.hasIndex()) {
appendStr(" index=");
appendUint(qualifier.layoutIndex);
}
appendStr("layout(");
if (qualifier.hasAnyLocation()) {
appendStr(" location=");
appendUint(qualifier.layoutLocation);
if (qualifier.hasComponent()) {
appendStr(" component=");
appendUint(qualifier.layoutComponent);
}
if (qualifier.hasSet()) {
appendStr(" set=");
appendUint(qualifier.layoutSet);
}
if (qualifier.hasBinding()) {
appendStr(" binding=");
appendUint(qualifier.layoutBinding);
}
if (qualifier.hasStream()) {
appendStr(" stream=");
appendUint(qualifier.layoutStream);
}
if (qualifier.hasMatrix()) {
appendStr(" ");
appendStr(TQualifier::getLayoutMatrixString(qualifier.layoutMatrix));
}
if (qualifier.hasPacking()) {
appendStr(" ");
appendStr(TQualifier::getLayoutPackingString(qualifier.layoutPacking));
}
if (qualifier.hasOffset()) {
appendStr(" offset=");
appendInt(qualifier.layoutOffset);
}
if (qualifier.hasAlign()) {
appendStr(" align=");
appendInt(qualifier.layoutAlign);
}
if (qualifier.hasFormat()) {
appendStr(" ");
appendStr(TQualifier::getLayoutFormatString(qualifier.layoutFormat));
}
if (qualifier.hasXfbBuffer() && qualifier.hasXfbOffset()) {
appendStr(" xfb_buffer=");
appendUint(qualifier.layoutXfbBuffer);
}
if (qualifier.hasXfbOffset()) {
appendStr(" xfb_offset=");
appendUint(qualifier.layoutXfbOffset);
}
if (qualifier.hasXfbStride()) {
appendStr(" xfb_stride=");
appendUint(qualifier.layoutXfbStride);
}
if (qualifier.hasAttachment()) {
appendStr(" input_attachment_index=");
appendUint(qualifier.layoutAttachment);
}
if (qualifier.hasSpecConstantId()) {
appendStr(" constant_id=");
appendUint(qualifier.layoutSpecConstantId);
}
if (qualifier.layoutPushConstant)
appendStr(" push_constant");
if (qualifier.layoutBufferReference)
appendStr(" buffer_reference");
if (qualifier.hasBufferReferenceAlign()) {
appendStr(" buffer_reference_align=");
appendUint(1u << qualifier.layoutBufferReferenceAlign);
if (qualifier.hasIndex()) {
appendStr(" index=");
appendUint(qualifier.layoutIndex);
}
}
if (qualifier.hasSet()) {
appendStr(" set=");
appendUint(qualifier.layoutSet);
}
if (qualifier.hasBinding()) {
appendStr(" binding=");
appendUint(qualifier.layoutBinding);
}
if (qualifier.hasStream()) {
appendStr(" stream=");
appendUint(qualifier.layoutStream);
}
if (qualifier.hasMatrix()) {
appendStr(" ");
appendStr(TQualifier::getLayoutMatrixString(qualifier.layoutMatrix));
}
if (qualifier.hasPacking()) {
appendStr(" ");
appendStr(TQualifier::getLayoutPackingString(qualifier.layoutPacking));
}
if (qualifier.hasOffset()) {
appendStr(" offset=");
appendInt(qualifier.layoutOffset);
}
if (qualifier.hasAlign()) {
appendStr(" align=");
appendInt(qualifier.layoutAlign);
}
if (qualifier.hasFormat()) {
appendStr(" ");
appendStr(TQualifier::getLayoutFormatString(qualifier.layoutFormat));
}
if (qualifier.hasXfbBuffer() && qualifier.hasXfbOffset()) {
appendStr(" xfb_buffer=");
appendUint(qualifier.layoutXfbBuffer);
}
if (qualifier.hasXfbOffset()) {
appendStr(" xfb_offset=");
appendUint(qualifier.layoutXfbOffset);
}
if (qualifier.hasXfbStride()) {
appendStr(" xfb_stride=");
appendUint(qualifier.layoutXfbStride);
}
if (qualifier.hasAttachment()) {
appendStr(" input_attachment_index=");
appendUint(qualifier.layoutAttachment);
}
if (qualifier.hasSpecConstantId()) {
appendStr(" constant_id=");
appendUint(qualifier.layoutSpecConstantId);
}
if (qualifier.layoutPushConstant)
appendStr(" push_constant");
if (qualifier.layoutBufferReference)
appendStr(" buffer_reference");
if (qualifier.hasBufferReferenceAlign()) {
appendStr(" buffer_reference_align=");
appendUint(1u << qualifier.layoutBufferReferenceAlign);
}
if (qualifier.layoutPassthrough)
appendStr(" passthrough");
if (qualifier.layoutViewportRelative)
appendStr(" layoutViewportRelative");
if (qualifier.layoutSecondaryViewportRelativeOffset != -2048) {
appendStr(" layoutSecondaryViewportRelativeOffset=");
appendInt(qualifier.layoutSecondaryViewportRelativeOffset);
}
if (qualifier.layoutShaderRecord)
appendStr(" shaderRecordNV");
if (qualifier.layoutPassthrough)
appendStr(" passthrough");
if (qualifier.layoutViewportRelative)
appendStr(" layoutViewportRelative");
if (qualifier.layoutSecondaryViewportRelativeOffset != -2048) {
appendStr(" layoutSecondaryViewportRelativeOffset=");
appendInt(qualifier.layoutSecondaryViewportRelativeOffset);
}
if (qualifier.layoutShaderRecord)
appendStr(" shaderRecordNV");
appendStr(")");
appendStr(")");
}
}
}
if (qualifier.invariant)
if (qualifier.invariant)
appendStr(" invariant");
if (qualifier.noContraction)
if (qualifier.noContraction)
appendStr(" noContraction");
if (qualifier.centroid)
if (qualifier.centroid)
appendStr(" centroid");
if (qualifier.smooth)
if (qualifier.smooth)
appendStr(" smooth");
if (qualifier.flat)
if (qualifier.flat)
appendStr(" flat");
if (qualifier.nopersp)
if (qualifier.nopersp)
appendStr(" noperspective");
if (qualifier.explicitInterp)
if (qualifier.explicitInterp)
appendStr(" __explicitInterpAMD");
if (qualifier.pervertexNV)
if (qualifier.pervertexNV)
appendStr(" pervertexNV");
if (qualifier.perPrimitiveNV)
if (qualifier.perPrimitiveNV)
appendStr(" perprimitiveNV");
if (qualifier.perViewNV)
if (qualifier.perViewNV)
appendStr(" perviewNV");
if (qualifier.perTaskNV)
if (qualifier.perTaskNV)
appendStr(" taskNV");
if (qualifier.patch)
if (qualifier.patch)
appendStr(" patch");
if (qualifier.sample)
if (qualifier.sample)
appendStr(" sample");
if (qualifier.coherent)
if (qualifier.coherent)
appendStr(" coherent");
if (qualifier.devicecoherent)
if (qualifier.devicecoherent)
appendStr(" devicecoherent");
if (qualifier.queuefamilycoherent)
if (qualifier.queuefamilycoherent)
appendStr(" queuefamilycoherent");
if (qualifier.workgroupcoherent)
if (qualifier.workgroupcoherent)
appendStr(" workgroupcoherent");
if (qualifier.subgroupcoherent)
if (qualifier.subgroupcoherent)
appendStr(" subgroupcoherent");
if (qualifier.shadercallcoherent)
if (qualifier.shadercallcoherent)
appendStr(" shadercallcoherent");
if (qualifier.nonprivate)
if (qualifier.nonprivate)
appendStr(" nonprivate");
if (qualifier.volatil)
if (qualifier.volatil)
appendStr(" volatile");
if (qualifier.restrict)
if (qualifier.restrict)
appendStr(" restrict");
if (qualifier.readonly)
if (qualifier.readonly)
appendStr(" readonly");
if (qualifier.writeonly)
if (qualifier.writeonly)
appendStr(" writeonly");
if (qualifier.specConstant)
if (qualifier.specConstant)
appendStr(" specialization-constant");
if (qualifier.nonUniform)
if (qualifier.nonUniform)
appendStr(" nonuniform");
if (qualifier.isNullInit())
if (qualifier.isNullInit())
appendStr(" null-init");
if (qualifier.isSpirvByReference())
if (qualifier.isSpirvByReference())
appendStr(" spirv_by_reference");
if (qualifier.isSpirvLiteral())
if (qualifier.isSpirvLiteral())
appendStr(" spirv_literal");
appendStr(" ");
appendStr(getStorageQualifierString());
if (isArray()) {
for(int i = 0; i < (int)arraySizes->getNumDims(); ++i) {
appendStr(" ");
appendStr(getStorageQualifierString());
}
if (getType) {
if (syntactic) {
if (getPrecision && qualifier.precision != EpqNone) {
appendStr(" ");
appendStr(getPrecisionQualifierString());
}
if (isVector() || isMatrix()) {
appendStr(" ");
switch (basicType) {
case EbtDouble:
appendStr("d");
break;
case EbtInt:
appendStr("i");
break;
case EbtUint:
appendStr("u");
break;
case EbtBool:
appendStr("b");
break;
case EbtFloat:
default:
break;
}
if (isVector()) {
appendStr("vec");
appendInt(vectorSize);
} else {
appendStr("mat");
appendInt(matrixCols);
appendStr("x");
appendInt(matrixRows);
}
} else if (isStruct() && structure) {
appendStr(" ");
appendStr(structName.c_str());
appendStr("{");
bool hasHiddenMember = true;
for (size_t i = 0; i < structure->size(); ++i) {
if (!(*structure)[i].type->hiddenMember()) {
if (!hasHiddenMember)
appendStr(", ");
typeString.append((*structure)[i].type->getCompleteString(syntactic, getQualifiers, getPrecision, getType, (*structure)[i].type->getFieldName()));
hasHiddenMember = false;
}
}
appendStr("}");
} else {
appendStr(" ");
switch (basicType) {
case EbtDouble:
appendStr("double");
break;
case EbtInt:
appendStr("int");
break;
case EbtUint:
appendStr("uint");
break;
case EbtBool:
appendStr("bool");
break;
case EbtFloat:
appendStr("float");
break;
default:
appendStr("unexpected");
break;
}
}
if (name.length() > 0) {
appendStr(" ");
appendStr(name.c_str());
}
if (isArray()) {
for (int i = 0; i < (int)arraySizes->getNumDims(); ++i) {
int size = arraySizes->getDimSize(i);
if (size == UnsizedArraySize && i == 0 && arraySizes->isVariablyIndexed())
appendStr(" runtime-sized array of");
appendStr("[]");
else {
if (size == UnsizedArraySize) {
appendStr(" unsized");
if (i == 0) {
appendStr(" ");
appendInt(arraySizes->getImplicitSize());
}
} else {
appendStr(" ");
appendInt(arraySizes->getDimSize(i));
}
appendStr("-element array of");
if (size == UnsizedArraySize) {
appendStr("[");
if (i == 0)
appendInt(arraySizes->getImplicitSize());
appendStr("]");
}
else {
appendStr("[");
appendInt(arraySizes->getDimSize(i));
appendStr("]");
}
}
}
}
}
if (isParameterized()) {
appendStr("<");
for(int i = 0; i < (int)typeParameters->getNumDims(); ++i) {
}
else {
if (isArray()) {
for (int i = 0; i < (int)arraySizes->getNumDims(); ++i) {
int size = arraySizes->getDimSize(i);
if (size == UnsizedArraySize && i == 0 && arraySizes->isVariablyIndexed())
appendStr(" runtime-sized array of");
else {
if (size == UnsizedArraySize) {
appendStr(" unsized");
if (i == 0) {
appendStr(" ");
appendInt(arraySizes->getImplicitSize());
}
}
else {
appendStr(" ");
appendInt(arraySizes->getDimSize(i));
}
appendStr("-element array of");
}
}
}
if (isParameterized()) {
appendStr("<");
for (int i = 0; i < (int)typeParameters->getNumDims(); ++i) {
appendInt(typeParameters->getDimSize(i));
if (i != (int)typeParameters->getNumDims() - 1)
appendStr(", ");
}
appendStr(">");
}
if (getPrecision && qualifier.precision != EpqNone) {
appendStr(" ");
appendStr(getPrecisionQualifierString());
}
if (isMatrix()) {
appendStr(" ");
appendInt(matrixCols);
appendStr("X");
appendInt(matrixRows);
appendStr(" matrix of");
}
else if (isVector()) {
appendStr(" ");
appendInt(vectorSize);
appendStr("-component vector of");
}
appendStr(" ");
typeString.append(getBasicTypeString());
if (qualifier.builtIn != EbvNone) {
appendStr(" ");
appendStr(getBuiltInVariableString());
}
// Add struct/block members
if (isStruct() && structure) {
appendStr("{");
bool hasHiddenMember = true;
for (size_t i = 0; i < structure->size(); ++i) {
if (!(*structure)[i].type->hiddenMember()) {
if (!hasHiddenMember)
appendStr(", ");
}
appendStr(">");
}
if (qualifier.precision != EpqNone) {
appendStr(" ");
appendStr(getPrecisionQualifierString());
}
if (isMatrix()) {
appendStr(" ");
appendInt(matrixCols);
appendStr("X");
appendInt(matrixRows);
appendStr(" matrix of");
} else if (isVector()) {
appendStr(" ");
appendInt(vectorSize);
appendStr("-component vector of");
}
appendStr(" ");
typeString.append(getBasicTypeString());
if (qualifier.builtIn != EbvNone) {
appendStr(" ");
appendStr(getBuiltInVariableString());
}
// Add struct/block members
if (isStruct() && structure) {
appendStr("{");
bool hasHiddenMember = true;
for (size_t i = 0; i < structure->size(); ++i) {
if (! (*structure)[i].type->hiddenMember()) {
if (!hasHiddenMember)
appendStr(", ");
typeString.append((*structure)[i].type->getCompleteString());
typeString.append(" ");
typeString.append((*structure)[i].type->getFieldName());
hasHiddenMember = false;
typeString.append((*structure)[i].type->getCompleteString());
typeString.append(" ");
typeString.append((*structure)[i].type->getFieldName());
hasHiddenMember = false;
}
}
appendStr("}");
}
appendStr("}");
}
}
return typeString;
@ -2444,10 +2548,20 @@ public:
// type definitions, and member names to be considered the same type.
// This rule applies recursively for nested or embedded types."
//
bool sameStructType(const TType& right) const
// If type mismatch in structure, return member indices through lpidx and rpidx.
// If matching members for either block are exhausted, return -1 for exhausted
// block and the index of the unmatched member. Otherwise return {-1,-1}.
//
bool sameStructType(const TType& right, int* lpidx = nullptr, int* rpidx = nullptr) const
{
// TODO: Why return true when neither types are structures?
// Initialize error to general type mismatch.
if (lpidx != nullptr) {
*lpidx = -1;
*rpidx = -1;
}
// Most commonly, they are both nullptr, or the same pointer to the same actual structure
// TODO: Why return true when neither types are structures?
if ((!isStruct() && !right.isStruct()) ||
(isStruct() && right.isStruct() && structure == right.structure))
return true;
@ -2464,11 +2578,17 @@ public:
bool isGLPerVertex = *typeName == "gl_PerVertex";
// Both being nullptr was caught above, now they both have to be structures of the same number of elements
if (structure->size() != right.structure->size() && !isGLPerVertex)
if (lpidx == nullptr &&
(structure->size() != right.structure->size() && !isGLPerVertex)) {
return false;
}
// Compare the names and types of all the members, which have to match
for (size_t li = 0, ri = 0; li < structure->size() || ri < right.structure->size(); ++li, ++ri) {
if (lpidx != nullptr) {
*lpidx = static_cast<int>(li);
*rpidx = static_cast<int>(ri);
}
if (li < structure->size() && ri < right.structure->size()) {
if ((*structure)[li].type->getFieldName() == (*right.structure)[ri].type->getFieldName()) {
if (*(*structure)[li].type != *(*right.structure)[ri].type)
@ -2498,11 +2618,19 @@ public:
}
// If we get here, then there should only be inconsistently declared members left
} else if (li < structure->size()) {
if (!(*structure)[li].type->hiddenMember() && !isInconsistentGLPerVertexMember((*structure)[li].type->getFieldName()))
if (!(*structure)[li].type->hiddenMember() && !isInconsistentGLPerVertexMember((*structure)[li].type->getFieldName())) {
if (lpidx != nullptr) {
*rpidx = -1;
}
return false;
}
} else {
if (!(*right.structure)[ri].type->hiddenMember() && !isInconsistentGLPerVertexMember((*right.structure)[ri].type->getFieldName()))
if (!(*right.structure)[ri].type->hiddenMember() && !isInconsistentGLPerVertexMember((*right.structure)[ri].type->getFieldName())) {
if (lpidx != nullptr) {
*lpidx = -1;
}
return false;
}
}
}
@ -2526,10 +2654,15 @@ public:
return *referentType == *right.referentType;
}
// See if two types match, in all aspects except arrayness
bool sameElementType(const TType& right) const
// See if two types match, in all aspects except arrayness
// If mismatch in structure members, return member indices in lpidx and rpidx.
bool sameElementType(const TType& right, int* lpidx = nullptr, int* rpidx = nullptr) const
{
return basicType == right.basicType && sameElementShape(right);
if (lpidx != nullptr) {
*lpidx = -1;
*rpidx = -1;
}
return basicType == right.basicType && sameElementShape(right, lpidx, rpidx);
}
// See if two type's arrayness match
@ -2563,15 +2696,20 @@ public:
#endif
// See if two type's elements match in all ways except basic type
bool sameElementShape(const TType& right) const
// If mismatch in structure members, return member indices in lpidx and rpidx.
bool sameElementShape(const TType& right, int* lpidx = nullptr, int* rpidx = nullptr) const
{
if (lpidx != nullptr) {
*lpidx = -1;
*rpidx = -1;
}
return sampler == right.sampler &&
vectorSize == right.vectorSize &&
matrixCols == right.matrixCols &&
matrixRows == right.matrixRows &&
vector1 == right.vector1 &&
isCoopMat() == right.isCoopMat() &&
sameStructType(right) &&
sameStructType(right, lpidx, rpidx) &&
sameReferenceType(right);
}