8. io mapping refine & qualifier member check & resolver expand (#2396)

* Code refine and adding missing features

1. Add new level for built in symbols.
2. Fix issues for structure members' qualifiers.
3. Global qualifier fix.
4. IO Mapper refine. Add support for checking with mangle names.

* Additional missing features

* Invariant member. (Only check non-interface).

* Split block nesting level and struct nesting level. To fix issues of checking 'invariant' qualifier.

Current grammar would check block/struct member without its parent class's information.
So we split nesting level, and 'invariant' would only be checked within a struct.

* Format anonymous block names. Refine codes for symbols from all kinds of resouces.

* Fix writeonly check.

* Use LValueBase to find operator.

* Fix random null ptr issue.

* invariant check, stage in io mapping, reference parameter should be used and remove wrong codes introduced with ordering vector.

* Remained: to be fixed with double check link.vk.multiblocksValid

* Fix version error.

invariant

* Revert loc modification.
This commit is contained in:
Chow 2020-11-04 04:34:19 +08:00 committed by GitHub
parent d550bebee9
commit 478b232952
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
25 changed files with 565 additions and 149 deletions

View file

@ -37,9 +37,11 @@
#include "../Include/Common.h"
#include "../Include/InfoSink.h"
#include "../Include/Types.h"
#include "gl_types.h"
#include "iomapper.h"
#include "SymbolTable.h"
//
// Map IO bindings.
@ -82,17 +84,17 @@ public:
// If a global is being visited, then we should also traverse it incase it's evaluation
// ends up visiting inputs we want to tag as live
else if (base->getQualifier().storage == EvqGlobal)
addGlobalReference(base->getName());
addGlobalReference(base->getAccessName());
if (target) {
TVarEntryInfo ent = {base->getId(), base, ! traverseAll};
ent.stage = intermediate.getStage();
TVarLiveMap::iterator at = target->find(
ent.symbol->getName()); // std::lower_bound(target->begin(), target->end(), ent, TVarEntryInfo::TOrderById());
ent.symbol->getAccessName()); // std::lower_bound(target->begin(), target->end(), ent, TVarEntryInfo::TOrderById());
if (at != target->end() && at->second.id == ent.id)
at->second.live = at->second.live || ! traverseAll; // update live state
else
(*target)[ent.symbol->getName()] = ent;
(*target)[ent.symbol->getAccessName()] = ent;
}
}
@ -125,7 +127,8 @@ public:
return;
TVarEntryInfo ent = { base->getId() };
TVarLiveMap::const_iterator at = source->find(base->getName());
// Fix a defect, when block has no instance name, we need to find its block name
TVarLiveMap::const_iterator at = source->find(base->getAccessName());
if (at == source->end())
return;
@ -181,7 +184,7 @@ struct TNotifyInOutAdaptor
inline void operator()(std::pair<const TString, TVarEntryInfo>& entKey)
{
resolver.notifyInOut(stage, entKey.second);
resolver.notifyInOut(entKey.second.stage, entKey.second);
}
private:
@ -189,12 +192,13 @@ private:
};
struct TResolverUniformAdaptor {
TResolverUniformAdaptor(EShLanguage s, TIoMapResolver& r, TInfoSink& i, bool& e)
TResolverUniformAdaptor(EShLanguage s, TIoMapResolver& r, TVarLiveMap* uniform[EShLangCount], TInfoSink& i, bool& e)
: stage(s)
, resolver(r)
, infoSink(i)
, error(e)
{
memcpy(uniformVarMap, uniform, EShLangCount * (sizeof(TVarLiveMap*)));
}
inline void operator()(std::pair<const TString, TVarEntryInfo>& entKey) {
@ -206,9 +210,9 @@ struct TResolverUniformAdaptor {
ent.newIndex = -1;
const bool isValid = resolver.validateBinding(stage, ent);
if (isValid) {
resolver.resolveBinding(stage, ent);
resolver.resolveSet(stage, ent);
resolver.resolveUniformLocation(stage, ent);
resolver.resolveBinding(ent.stage, ent);
resolver.resolveSet(ent.stage, ent);
resolver.resolveUniformLocation(ent.stage, ent);
if (ent.newBinding != -1) {
if (ent.newBinding >= int(TQualifier::layoutBindingEnd)) {
@ -217,6 +221,17 @@ struct TResolverUniformAdaptor {
infoSink.info.message(EPrefixInternalError, err.c_str());
error = true;
}
if (ent.symbol->getQualifier().hasBinding()) {
for (uint32_t idx = EShLangVertex; idx < EShLangCount; ++idx) {
if (idx == ent.stage || uniformVarMap[idx] == nullptr)
continue;
auto entKey2 = uniformVarMap[idx]->find(entKey.first);
if (entKey2 != uniformVarMap[idx]->end()) {
entKey2->second.newBinding = ent.newBinding;
}
}
}
}
if (ent.newSet != -1) {
if (ent.newSet >= int(TQualifier::layoutSetEnd)) {
@ -225,6 +240,16 @@ struct TResolverUniformAdaptor {
infoSink.info.message(EPrefixInternalError, err.c_str());
error = true;
}
if (ent.symbol->getQualifier().hasSet()) {
for (uint32_t idx = EShLangVertex; idx < EShLangCount; ++idx) {
if ((idx == stage) || (uniformVarMap[idx] == nullptr))
continue;
auto entKey2 = uniformVarMap[idx]->find(entKey.first);
if (entKey2 != uniformVarMap[idx]->end()) {
entKey2->second.newSet = ent.newSet;
}
}
}
}
} else {
TString errorMsg = "Invalid binding: " + entKey.first;
@ -239,7 +264,7 @@ struct TResolverUniformAdaptor {
TIoMapResolver& resolver;
TInfoSink& infoSink;
bool& error;
TVarLiveMap* uniformVarMap[EShLangCount];
private:
TResolverUniformAdaptor& operator=(TResolverUniformAdaptor&) = delete;
};
@ -261,7 +286,7 @@ struct TResolverInOutAdaptor {
ent.newBinding = -1;
ent.newSet = -1;
ent.newIndex = -1;
const bool isValid = resolver.validateInOut(stage, ent);
const bool isValid = resolver.validateInOut(ent.stage, ent);
if (isValid) {
resolver.resolveInOutLocation(stage, ent);
resolver.resolveInOutComponent(stage, ent);
@ -296,17 +321,116 @@ private:
struct TSymbolValidater
{
TSymbolValidater(TIoMapResolver& r, TInfoSink& i, TVarLiveMap* in[EShLangCount], TVarLiveMap* out[EShLangCount],
TVarLiveMap* uniform[EShLangCount], bool& hadError)
TVarLiveMap* uniform[EShLangCount], bool& hadError, EProfile profile, int version)
: preStage(EShLangCount)
, currentStage(EShLangCount)
, nextStage(EShLangCount)
, resolver(r)
, infoSink(i)
, hadError(hadError)
, profile(profile)
, version(version)
{
memcpy(inVarMaps, in, EShLangCount * (sizeof(TVarLiveMap*)));
memcpy(outVarMaps, out, EShLangCount * (sizeof(TVarLiveMap*)));
memcpy(uniformVarMap, uniform, EShLangCount * (sizeof(TVarLiveMap*)));
std::map<TString, TString> anonymousMemberMap;
std::vector<TRange> usedUniformLocation;
std::vector<TString> usedUniformName;
usedUniformLocation.clear();
usedUniformName.clear();
for (int i = 0; i < EShLangCount; i++) {
if (uniformVarMap[i]) {
for (auto uniformVar : *uniformVarMap[i])
{
TIntermSymbol* pSymbol = uniformVar.second.symbol;
TQualifier qualifier = uniformVar.second.symbol->getQualifier();
TString symbolName = pSymbol->getAccessName();
// All the uniform needs multi-stage location check (block/default)
int uniformLocation = qualifier.layoutLocation;
if (uniformLocation != TQualifier::layoutLocationEnd) {
// Total size of current uniform, could be block, struct or other types.
int size = TIntermediate::computeTypeUniformLocationSize(pSymbol->getType());
TRange locationRange(uniformLocation, uniformLocation + size - 1);
// Combine location and component ranges
int overlapLocation = -1;
bool diffLocation = false;
// Check for collisions, except for vertex inputs on desktop targeting OpenGL
overlapLocation = checkLocationOverlap(locationRange, usedUniformLocation, symbolName, usedUniformName, diffLocation);
// Overlap locations of uniforms, regardless of components (multi stages)
if (overlapLocation == -1) {
usedUniformLocation.push_back(locationRange);
usedUniformName.push_back(symbolName);
}
else if (overlapLocation >= 0) {
if (diffLocation == true) {
TString err = "Uniform location should be equal for same uniforms: " + overlapLocation;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
break;
}
else {
TString err = "Uniform location overlaps across stages: " + overlapLocation;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
break;
}
}
}
if ((uniformVar.second.symbol->getBasicType() == EbtBlock) &&
IsAnonymous(uniformVar.second.symbol->getName()))
{
auto blockType = uniformVar.second.symbol->getType().getStruct();
for (size_t memberIdx = 0; memberIdx < blockType->size(); ++memberIdx) {
auto memberName = (*blockType)[memberIdx].type->getFieldName();
if (anonymousMemberMap.find(memberName) != anonymousMemberMap.end())
{
if (anonymousMemberMap[memberName] != uniformVar.second.symbol->getType().getTypeName())
{
TString err = "Invalid block member name: " + memberName;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
break;
}
}
else
{
anonymousMemberMap[memberName] = uniformVar.second.symbol->getType().getTypeName();
}
}
}
if (hadError)
break;
}
}
}
}
// In case we need to new an intermediate, which costs too much
int checkLocationOverlap(const TRange& locationRange, std::vector<TRange>& usedUniformLocation, const TString symbolName, std::vector<TString>& usedUniformName, bool& diffLocation)
{
for (size_t r = 0; r < usedUniformLocation.size(); ++r) {
if (usedUniformName[r] == symbolName) {
diffLocation = true;
return (usedUniformLocation[r].start == locationRange.start &&
usedUniformLocation[r].last == locationRange.last)
? -2 : std::max(locationRange.start, usedUniformLocation[r].start);
}
if (locationRange.overlap(usedUniformLocation[r])) {
// there is a collision; pick one
return std::max(locationRange.start, usedUniformLocation[r].start);
}
}
return -1; // no collision
}
inline void operator()(std::pair<const TString, TVarEntryInfo>& entKey) {
@ -339,11 +463,24 @@ struct TSymbolValidater
// validate stage in;
if (preStage == EShLangCount)
return;
if (name == "gl_PerVertex")
if (TSymbolTable::isBuiltInSymbol(base->getId()))
return;
if (outVarMaps[preStage] != nullptr) {
auto ent2 = outVarMaps[preStage]->find(name);
uint32_t location = base->getType().getQualifier().layoutLocation;
if (ent2 == outVarMaps[preStage]->end() &&
location != glslang::TQualifier::layoutLocationEnd) {
for (auto var = outVarMaps[preStage]->begin(); var != ent2; var++) {
if (var->second.symbol->getType().getQualifier().layoutLocation == location) {
ent2 = var;
break;
}
}
}
if (ent2 != outVarMaps[preStage]->end()) {
auto& type1 = base->getType();
auto& type2 = ent2->second.symbol->getType();
hadError = hadError || typeCheck(&type1, &type2, name.c_str(), false);
if (ent2->second.symbol->getType().getQualifier().isArrayedIo(preStage)) {
TType subType(ent2->second.symbol->getType(), 0);
subType.appendMangledName(mangleName2);
@ -351,23 +488,49 @@ struct TSymbolValidater
else {
ent2->second.symbol->getType().appendMangledName(mangleName2);
}
if (mangleName1 == mangleName2)
if (mangleName1 == mangleName2) {
// For ES 3.0 only, other versions have no such restrictions
// According to ES 3.0 spec: The type and presence of the interpolation qualifiers and
// storage qualifiers of variables with the same name declared in all linked shaders must
// match, otherwise the link command will fail.
if (profile == EEsProfile && version == 300) {
// Don't need to check smooth qualifier, as it uses the default interpolation mode
if (ent1.stage == EShLangFragment && type1.isBuiltIn() == false) {
if (type1.getQualifier().flat != type2.getQualifier().flat ||
type1.getQualifier().nopersp != type2.getQualifier().nopersp) {
TString err = "Interpolation qualifier mismatch : " + entKey.first;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
}
}
}
return;
}
else {
TString err = "Invalid In/Out variable type : " + entKey.first;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
}
}
else if (!base->getType().isBuiltIn()) {
// According to spec: A link error is generated if any statically referenced input variable
// or block does not have a matching output
if (profile == EEsProfile && ent1.live) {
hadError = true;
TString errorStr = name + ": not been declare as a output variable in pre shader stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
}
return;
}
} else if (base->getQualifier().storage == EvqVaryingOut) {
// validate stage out;
if (nextStage == EShLangCount)
return;
if (name == "gl_PerVertex")
if (TSymbolTable::isBuiltInSymbol(base->getId()))
return;
if (outVarMaps[nextStage] != nullptr) {
if (inVarMaps[nextStage] != nullptr) {
auto ent2 = inVarMaps[nextStage]->find(name);
if (ent2 != inVarMaps[nextStage]->end()) {
if (ent2->second.symbol->getType().getQualifier().isArrayedIo(nextStage)) {
@ -400,11 +563,50 @@ struct TSymbolValidater
hadError = true;
}
mangleName2.clear();
// validate instance name of blocks
if (hadError == false &&
base->getType().getBasicType() == EbtBlock &&
IsAnonymous(base->getName()) != IsAnonymous(ent2->second.symbol->getName())) {
TString err = "Matched uniform block names must also either all be lacking "
"an instance name or all having an instance name: " + entKey.first;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
}
// validate uniform block member qualifier and member names
auto& type1 = base->getType();
auto& type2 = ent2->second.symbol->getType();
if (hadError == false && base->getType().getBasicType() == EbtBlock) {
hadError = hadError || typeCheck(&type1, &type2, name.c_str(), true);
}
else {
hadError = hadError || typeCheck(&type1, &type2, name.c_str(), false);
}
}
else if (base->getBasicType() == EbtBlock)
{
if (IsAnonymous(base->getName()))
{
// The name of anonymous block member can't same with default uniform variable.
auto blockType1 = base->getType().getStruct();
for (size_t memberIdx = 0; memberIdx < blockType1->size(); ++memberIdx) {
auto memberName = (*blockType1)[memberIdx].type->getFieldName();
if (uniformVarMap[i]->find(memberName) != uniformVarMap[i]->end())
{
TString err = "Invalid Uniform variable name : " + memberName;
infoSink.info.message(EPrefixInternalError, err.c_str());
hadError = true;
break;
}
}
}
}
}
}
}
}
TVarLiveMap *inVarMaps[EShLangCount], *outVarMaps[EShLangCount], *uniformVarMap[EShLangCount];
// Use for mark pre stage, to get more interface symbol information.
EShLanguage preStage, currentStage, nextStage;
@ -412,9 +614,118 @@ struct TSymbolValidater
TIoMapResolver& resolver;
TInfoSink& infoSink;
bool& hadError;
EProfile profile;
int version;
private:
TSymbolValidater& operator=(TSymbolValidater&) = delete;
bool qualifierCheck(const TType* const type1, const TType* const type2, const std::string& name, bool isBlock)
{
bool hasError = false;
const TQualifier& qualifier1 = type1->getQualifier();
const TQualifier& qualifier2 = type2->getQualifier();
if (isBlock == false &&
(type1->getQualifier().storage == EvqUniform && type2->getQualifier().storage == EvqUniform) ||
(type1->getQualifier().storage == EvqGlobal && type2->getQualifier().storage == EvqGlobal)) {
if (qualifier1.precision != qualifier2.precision) {
hasError = true;
std::string errorStr = name + ": have precision conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
if (qualifier1.hasFormat() && qualifier2.hasFormat()) {
if (qualifier1.layoutFormat != qualifier2.layoutFormat) {
hasError = true;
std::string errorStr = name + ": have layout format conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
}
}
if (isBlock == true) {
if (qualifier1.layoutPacking != qualifier2.layoutPacking) {
hasError = true;
std::string errorStr = name + ": have layoutPacking conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
if (qualifier1.layoutMatrix != qualifier2.layoutMatrix) {
hasError = true;
std::string errorStr = name + ": have layoutMatrix conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
if (qualifier1.layoutOffset != qualifier2.layoutOffset) {
hasError = true;
std::string errorStr = name + ": have layoutOffset conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
if (qualifier1.layoutAlign != qualifier2.layoutAlign) {
hasError = true;
std::string errorStr = name + ": have layoutAlign conflict cross stage.";
infoSink.info.message(EPrefixError, errorStr.c_str());
}
}
return hasError;
}
bool typeCheck(const TType* const type1, const TType* const type2, const std::string& name, bool isBlock)
{
bool hasError = false;
if (!(type1->isStruct() && type2->isStruct())) {
hasError = hasError || qualifierCheck(type1, type2, name, isBlock);
}
else {
if (type1->getBasicType() == EbtBlock && type2->getBasicType() == EbtBlock)
isBlock = true;
const TTypeList* typeList1 = type1->getStruct();
const TTypeList* typeList2 = type2->getStruct();
std::string newName = name;
size_t memberCount = typeList1->size();
size_t index2 = 0;
for (size_t index = 0; index < memberCount; index++, index2++) {
// Skip inactive member
if (typeList1->at(index).type->getBasicType() == EbtVoid)
continue;
while (index2 < typeList2->size() && typeList2->at(index2).type->getBasicType() == EbtVoid) {
++index2;
}
// TypeList1 has more members in list
if (index2 == typeList2->size()) {
std::string errorStr = name + ": struct mismatch.";
infoSink.info.message(EPrefixError, errorStr.c_str());
hasError = true;
break;
}
if (typeList1->at(index).type->getFieldName() != typeList2->at(index2).type->getFieldName()) {
std::string errorStr = name + ": member name mismatch.";
infoSink.info.message(EPrefixError, errorStr.c_str());
hasError = true;
}
else {
newName = typeList1->at(index).type->getFieldName().c_str();
}
hasError = hasError || typeCheck(typeList1->at(index).type, typeList2->at(index2).type, newName, isBlock);
}
while (index2 < typeList2->size())
{
// TypeList2 has more members
if (typeList2->at(index2).type->getBasicType() != EbtVoid) {
std::string errorStr = name + ": struct mismatch.";
infoSink.info.message(EPrefixError, errorStr.c_str());
hasError = true;
break;
}
++index2;
}
}
return hasError;
}
};
struct TSlotCollector {
@ -500,7 +811,7 @@ int TDefaultIoResolverBase::resolveSet(EShLanguage /*stage*/, TVarEntryInfo& ent
int TDefaultIoResolverBase::resolveUniformLocation(EShLanguage /*stage*/, TVarEntryInfo& ent) {
const TType& type = ent.symbol->getType();
const char* name = ent.symbol->getName().c_str();
const char* name = ent.symbol->getAccessName().c_str();
// kick out of not doing this
if (! doAutoLocationMapping()) {
return ent.newLocation = -1;
@ -609,7 +920,7 @@ TDefaultGlslIoResolver::TDefaultGlslIoResolver(const TIntermediate& intermediate
int TDefaultGlslIoResolver::resolveInOutLocation(EShLanguage stage, TVarEntryInfo& ent) {
const TType& type = ent.symbol->getType();
const TString& name = getAccessName(ent.symbol);
const TString& name = ent.symbol->getAccessName();
if (currentStage != stage) {
preStage = currentStage;
currentStage = stage;
@ -693,7 +1004,7 @@ int TDefaultGlslIoResolver::resolveInOutLocation(EShLanguage stage, TVarEntryInf
int TDefaultGlslIoResolver::resolveUniformLocation(EShLanguage /*stage*/, TVarEntryInfo& ent) {
const TType& type = ent.symbol->getType();
const TString& name = getAccessName(ent.symbol);
const TString& name = ent.symbol->getAccessName();
// kick out of not doing this
if (! doAutoLocationMapping()) {
return ent.newLocation = -1;
@ -764,7 +1075,7 @@ int TDefaultGlslIoResolver::resolveUniformLocation(EShLanguage /*stage*/, TVarEn
int TDefaultGlslIoResolver::resolveBinding(EShLanguage /*stage*/, TVarEntryInfo& ent) {
const TType& type = ent.symbol->getType();
const TString& name = getAccessName(ent.symbol);
const TString& name = ent.symbol->getAccessName();
// On OpenGL arrays of opaque types take a separate binding for each element
int numBindings = intermediate.getSpv().openGl != 0 && type.isSizedArray() ? type.getCumulativeArraySize() : 1;
TResourceType resource = getResourceType(type);
@ -839,7 +1150,7 @@ void TDefaultGlslIoResolver::endCollect(EShLanguage /*stage*/) {
void TDefaultGlslIoResolver::reserverStorageSlot(TVarEntryInfo& ent, TInfoSink& infoSink) {
const TType& type = ent.symbol->getType();
const TString& name = getAccessName(ent.symbol);
const TString& name = ent.symbol->getAccessName();
TStorageQualifier storage = type.getQualifier().storage;
EShLanguage stage(EShLangCount);
switch (storage) {
@ -899,7 +1210,7 @@ void TDefaultGlslIoResolver::reserverStorageSlot(TVarEntryInfo& ent, TInfoSink&
void TDefaultGlslIoResolver::reserverResourceSlot(TVarEntryInfo& ent, TInfoSink& infoSink) {
const TType& type = ent.symbol->getType();
const TString& name = getAccessName(ent.symbol);
const TString& name = ent.symbol->getAccessName();
int resource = getResourceType(type);
if (type.getQualifier().hasBinding()) {
TVarSlotMap& varSlotMap = resourceSlotMap[resource];
@ -922,13 +1233,6 @@ void TDefaultGlslIoResolver::reserverResourceSlot(TVarEntryInfo& ent, TInfoSink&
}
}
const TString& TDefaultGlslIoResolver::getAccessName(const TIntermSymbol* symbol)
{
return symbol->getBasicType() == EbtBlock ?
symbol->getType().getTypeName() :
symbol->getName();
}
//TDefaultGlslIoResolver end
/*
@ -1117,25 +1421,23 @@ bool TIoMapper::addStage(EShLanguage stage, TIntermediate& intermediate, TInfoSi
}
// sort entries by priority. see TVarEntryInfo::TOrderByPriority for info.
std::for_each(inVarMap.begin(), inVarMap.end(),
[&inVector](TVarLivePair p) { inVector.push_back(p); });
for (auto& var : inVarMap) { inVector.push_back(var); }
std::sort(inVector.begin(), inVector.end(), [](const TVarLivePair& p1, const TVarLivePair& p2) -> bool {
return TVarEntryInfo::TOrderByPriority()(p1.second, p2.second);
});
std::for_each(outVarMap.begin(), outVarMap.end(),
[&outVector](TVarLivePair p) { outVector.push_back(p); });
for (auto& var : outVarMap) { outVector.push_back(var); }
std::sort(outVector.begin(), outVector.end(), [](const TVarLivePair& p1, const TVarLivePair& p2) -> bool {
return TVarEntryInfo::TOrderByPriority()(p1.second, p2.second);
});
std::for_each(uniformVarMap.begin(), uniformVarMap.end(),
[&uniformVector](TVarLivePair p) { uniformVector.push_back(p); });
for (auto& var : uniformVarMap) { uniformVector.push_back(var); }
std::sort(uniformVector.begin(), uniformVector.end(), [](const TVarLivePair& p1, const TVarLivePair& p2) -> bool {
return TVarEntryInfo::TOrderByPriority()(p1.second, p2.second);
});
bool hadError = false;
TVarLiveMap* dummyUniformVarMap[EShLangCount] = {};
TNotifyInOutAdaptor inOutNotify(stage, *resolver);
TNotifyUniformAdaptor uniformNotify(stage, *resolver);
TResolverUniformAdaptor uniformResolve(stage, *resolver, infoSink, hadError);
TResolverUniformAdaptor uniformResolve(stage, *resolver, dummyUniformVarMap, infoSink, hadError);
TResolverInOutAdaptor inOutResolve(stage, *resolver, infoSink, hadError);
resolver->beginNotifications(stage);
std::for_each(inVector.begin(), inVector.end(), inOutNotify);
@ -1143,22 +1445,22 @@ bool TIoMapper::addStage(EShLanguage stage, TIntermediate& intermediate, TInfoSi
std::for_each(uniformVector.begin(), uniformVector.end(), uniformNotify);
resolver->endNotifications(stage);
resolver->beginResolve(stage);
std::for_each(inVector.begin(), inVector.end(), inOutResolve);
for (auto& var : inVector) { inOutResolve(var); }
std::for_each(inVector.begin(), inVector.end(), [&inVarMap](TVarLivePair p) {
auto at = inVarMap.find(p.second.symbol->getName());
if (at != inVarMap.end())
auto at = inVarMap.find(p.second.symbol->getAccessName());
if (at != inVarMap.end() && p.second.id == at->second.id)
at->second = p.second;
});
std::for_each(outVector.begin(), outVector.end(), inOutResolve);
for (auto& var : outVector) { inOutResolve(var); }
std::for_each(outVector.begin(), outVector.end(), [&outVarMap](TVarLivePair p) {
auto at = outVarMap.find(p.second.symbol->getName());
if (at != outVarMap.end())
auto at = outVarMap.find(p.second.symbol->getAccessName());
if (at != outVarMap.end() && p.second.id == at->second.id)
at->second = p.second;
});
std::for_each(uniformVector.begin(), uniformVector.end(), uniformResolve);
std::for_each(uniformVector.begin(), uniformVector.end(), [&uniformVarMap](TVarLivePair p) {
auto at = uniformVarMap.find(p.second.symbol->getName());
if (at != uniformVarMap.end())
auto at = uniformVarMap.find(p.second.symbol->getAccessName());
if (at != uniformVarMap.end() && p.second.id == at->second.id)
at->second = p.second;
});
resolver->endResolve(stage);
@ -1174,9 +1476,14 @@ bool TIoMapper::addStage(EShLanguage stage, TIntermediate& intermediate, TInfoSi
//
// Returns false if the input is too malformed to do this.
bool TGlslIoMapper::addStage(EShLanguage stage, TIntermediate& intermediate, TInfoSink& infoSink, TIoMapResolver* resolver) {
bool somethingToDo = !intermediate.getResourceSetBinding().empty() ||
intermediate.getAutoMapBindings() ||
intermediate.getAutoMapLocations();
// Profile and version are use for symbol validate.
profile = intermediate.getProfile();
version = intermediate.getVersion();
bool somethingToDo = ! intermediate.getResourceSetBinding().empty() || intermediate.getAutoMapBindings() ||
intermediate.getAutoMapLocations();
// Restrict the stricter condition to further check 'somethingToDo' only if 'somethingToDo' has not been set, reduce
// unnecessary or insignificant for-loop operation after 'somethingToDo' have been true.
for (int res = 0; (res < EResCount && !somethingToDo); ++res) {
@ -1236,31 +1543,30 @@ bool TGlslIoMapper::doMap(TIoMapResolver* resolver, TInfoSink& infoSink) {
resolver->endResolve(EShLangCount);
if (!hadError) {
//Resolve uniform location, ubo/ssbo/opaque bindings across stages
TResolverUniformAdaptor uniformResolve(EShLangCount, *resolver, infoSink, hadError);
TResolverUniformAdaptor uniformResolve(EShLangCount, *resolver, uniformVarMap, infoSink, hadError);
TResolverInOutAdaptor inOutResolve(EShLangCount, *resolver, infoSink, hadError);
TSymbolValidater symbolValidater(*resolver, infoSink, inVarMaps, outVarMaps, uniformVarMap, hadError);
TSymbolValidater symbolValidater(*resolver, infoSink, inVarMaps,
outVarMaps, uniformVarMap, hadError, profile, version);
TVarLiveVector uniformVector;
resolver->beginResolve(EShLangCount);
for (int stage = EShLangVertex; stage < EShLangCount; stage++) {
if (inVarMaps[stage] != nullptr) {
inOutResolve.setStage(EShLanguage(stage));
std::for_each(inVarMaps[stage]->begin(), inVarMaps[stage]->end(), symbolValidater);
std::for_each(inVarMaps[stage]->begin(), inVarMaps[stage]->end(), inOutResolve);
std::for_each(outVarMaps[stage]->begin(), outVarMaps[stage]->end(), symbolValidater);
std::for_each(outVarMaps[stage]->begin(), outVarMaps[stage]->end(), inOutResolve);
for (auto& var : *(inVarMaps[stage])) { symbolValidater(var); }
for (auto& var : *(inVarMaps[stage])) { inOutResolve(var); }
for (auto& var : *(outVarMaps[stage])) { symbolValidater(var); }
for (auto& var : *(outVarMaps[stage])) { inOutResolve(var); }
}
if (uniformVarMap[stage] != nullptr) {
uniformResolve.setStage(EShLanguage(stage));
// sort entries by priority. see TVarEntryInfo::TOrderByPriority for info.
std::for_each(uniformVarMap[stage]->begin(), uniformVarMap[stage]->end(),
[&uniformVector](TVarLivePair p) { uniformVector.push_back(p); });
for (auto& var : *(uniformVarMap[stage])) { uniformVector.push_back(var); }
}
}
std::sort(uniformVector.begin(), uniformVector.end(), [](const TVarLivePair& p1, const TVarLivePair& p2) -> bool {
return TVarEntryInfo::TOrderByPriority()(p1.second, p2.second);
});
std::for_each(uniformVector.begin(), uniformVector.end(), symbolValidater);
std::for_each(uniformVector.begin(), uniformVector.end(), uniformResolve);
for (auto& var : uniformVector) { symbolValidater(var); }
for (auto& var : uniformVector) { uniformResolve(var); }
std::sort(uniformVector.begin(), uniformVector.end(), [](const TVarLivePair& p1, const TVarLivePair& p2) -> bool {
return TVarEntryInfo::TOrderByPriority()(p1.second, p2.second);
});
@ -1269,14 +1575,18 @@ bool TGlslIoMapper::doMap(TIoMapResolver* resolver, TInfoSink& infoSink) {
if (intermediates[stage] != nullptr) {
// traverse each stage, set new location to each input/output and unifom symbol, set new binding to
// ubo, ssbo and opaque symbols
TVarLiveMap** pUniformVarMap = uniformVarMap;
TVarLiveMap** pUniformVarMap = uniformResolve.uniformVarMap;
std::for_each(uniformVector.begin(), uniformVector.end(), [pUniformVarMap, stage](TVarLivePair p) {
auto at = pUniformVarMap[stage]->find(p.second.symbol->getName());
if (at != pUniformVarMap[stage]->end())
auto at = pUniformVarMap[stage]->find(p.second.symbol->getAccessName());
if (at != pUniformVarMap[stage]->end() && at->second.id == p.second.id){
int resolvedBinding = at->second.newBinding;
at->second = p.second;
if (resolvedBinding > 0)
at->second.newBinding = resolvedBinding;
}
});
TVarSetTraverser iter_iomap(*intermediates[stage], *inVarMaps[stage], *outVarMaps[stage],
*uniformVarMap[stage]);
*uniformResolve.uniformVarMap[stage]);
intermediates[stage]->getTreeRoot()->traverse(&iter_iomap);
}
}